Tumour suppressor genes in chemotherapeutic drug response
نویسندگان
چکیده
Since cancer is one of the leading causes of death worldwide, there is an urgent need to find better treatments. Currently, the use of chemotherapeutics remains the predominant option for cancer therapy. However, one of the major obstacles for successful cancer therapy using these chemotherapeutics is that patients often do not respond or eventually develop resistance after initial treatment. Therefore identification of genes involved in chemotherapeutic response is critical for predicting tumour response and treating drug-resistant cancer patients. A group of genes commonly lost or inactivated are tumour suppressor genes, which can promote the initiation and progression of cancer through regulation of various biological processes such as cell proliferation, cell death and cell migration/invasion. Recently, mounting evidence suggests that these tumour suppressor genes also play a very important role in the response of cancers to a variety of chemotherapeutic drugs. In the present review, we will provide a comprehensive overview on how major tumour suppressor genes [Rb (retinoblastoma), p53 family, cyclin-dependent kinase inhibitors, BRCA1 (breast-cancer susceptibility gene 1), PTEN (phosphatase and tensin homologue deleted on chromosome 10), Hippo pathway, etc.] are involved in chemotherapeutic drug response and discuss their applications in predicting the clinical outcome of chemotherapy for cancer patients. We also propose that tumour suppressor genes are critical chemotherapeutic targets for the successful treatment of drug-resistant cancer patients in future applications.
منابع مشابه
9 intracellular single-chain antibodies for gene therapy.
The delineation of the molecular basis of cancer in general, allows for the possibility of specific intervention at the molecular level for therapeutic purposes. To this end, three main approaches have been developed: mutation compensation, molecular chemotherapy, and genetic immunopotentiation. The strategy of mutation compensation aims to correct the specific genetic defects in cancer cells. ...
متن کاملUpregulation of retinoic acid receptor-β reverses drug resistance in cholangiocarcinoma cells by enhancing susceptibility to apoptosis
Retinoic acid receptor β (RARβ), a known tumor suppressor gene, is frequently silenced in numerous malignant types of tumor. Recent reports have demonstrated that loss of RARβ expression may be responsible, in part, for the drug resistance observed in clinical trials. However, little is known about the role of RARβ in regulating drug sensitivity in patients with cholangiocarcinoma (CCA) with a ...
متن کاملChemotherapeutic selectivity conferred by selenium: a role for p53-dependent DNA repair.
Selenium in various chemical forms has been the subject of cancer chemoprevention trials, but, more recently, selenium has been used in combination with DNA-damaging chemotherapeutics. Specifically, selenium protected tissues from dose-limiting toxicity and, in fact, allowed delivery of higher chemotherapeutic doses. At the same time, selenium did not protect cancer cells. Therefore, we seek to...
متن کاملDrug discovery and p53.
In the past two decades, the identification of commonly mutated oncogenes and tumour suppressor genes has driven an unprecedented growth in our understanding of the genetic basis of human cancer. Although oncogenes can clearly serve as classically defined drug targets whose inactivation by small molecules could place a brake on cancer cell proliferation, the restoration of mutated tumour suppre...
متن کاملMultiple Low Doses of 5-Fluorouracil Diminishes Immunosuppression by Myeloid Derived Suppressor Cells in Murine Melanoma Model
Background: Melanoma progression and metastasis is suggested to be mediated by increased accumulation of myeloid derived suppressor cells. Various chemotherapeutic drugs such as 5-Fluorouracil in single low concentration have the capacity, at least in part, to reverse tumor progression by reducing myeloid derived suppressor cellsmediated immunosuppression. Objective: To assess whether multiple ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 32 شماره
صفحات -
تاریخ انتشار 2012